
International Journal of Scientific & Engineering Research, Volume 11, Issue 5, May-2020

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

Challenges in Big Data Security and mitigating
Threats by leveraging Apache Hadoop

Pravat Sutar

Abstract— Data breaches are on the rise in recent days. The HIPAA Breach Reporting Tool website of the Department of Health and Hu-

man Services shows a total of 105 breaches affecting more than 2.5 million individuals and added to the tally so far in 2020. Ryuk Ran-

somware continues to target medical facilities despite the ongoing COVID-19 pandemic. While the healthcare industry is focused on pre-

venting the spread of coronavirus and working on the vaccine, hacking groups are targeting the industry in full force. On March 2020, its re-

ported that more than 5 billion records were exposed due to an unprotected Elasticsearch database managed by a UK based security firm.

Marriott’s Data Breach could end up costing the hospitality business of $3.5 billion. A higher education institution in Victoria, Australia, has

disclosed a data breach impacting the personal data of around 90,000 staff, students, and suppliers. Over 3,800 data breaches were re-

ported through June 2019 and exposed over 4.1 billion records which is 50% or greater increase over the last four years. An attack on Fa-

cebook’s computer network exposed the personal data of over 50 million users on Sept 2018. Lenovo confirmed 36TB Data Leak Security

Vulnerability on July 2019. In terms of data breach sources, malicious outsiders and accidental loss are at the top of the list in 2020. A report

from Market Research forecasts that the Hadoop market will grow at a compound annual growth rate (CAGR) of 58 percent through 2022.

With major data breaches hitting well-known entities, data security becomes more and more critical and challenging, and security in big

data cannot be overlooked. Data protection regulations and standards including the European Union's General Data Protection Regulation

(GDPR), New York's Cybersecurity Requirements for Financial Services Companies and Australia's Notifiable Data Breach (NDB) schemes

are introduced to help organizations better protect customers' privacy and security by design. The volume of data generated in enterprise

environments is growing exponentially. More and more organizations are exploring the Big Data infrastructure that support new opportuni-

ties, cost savings and transformation. Organizations are collecting extremely large datasets from diverse data sources for advanced data

analytics. Hence, data protection and data privacy in Big Data Hadoop need to be considered from day one while adhering to expanding

compliance requirements. Goals for data management systems, such as confidentiality, integrity, and availability, require that the system be

secured across several dimensions.

The goal of this paper is to provide a comprehensive and holistic view on security challenges in Big Data Hadoop and techniques to mit-

igate the risks associated with the security threats. The paper also addresses the challenges in big data security and provides the solutions

by leveraging the Apache Hadoop. Different data security solutions such as access to the Hadoop cluster through perimeter security (i.e.

authentication and network isolation), protecting data in the cluster from any unauthorized access (i.e. encryption, row level filter and data

masking), defining what users and applications can do with data (i.e. authorization, permission), reporting on where data came from and

how it’s been used (i.e. data lineage and auditing and data governance) and using SSL or TLS network security to authenticate and ensure

privacy of communications between nodes, name servers, and applications are covered in this paper. The paper also highlights the recom-

mendations and best practices of each security components in Big Data Hadoop defined.

Index Terms— Big Data Hadoop, Data Security, Authorization, Authentication, Data Encryption, Data Lineage, Data Governance, Data

Audit and Reporting, Data Breach, Data Masking, Row Level Data Filter, Access Control List, Key Management Service (KMS), Secure

Socket Layer (SSL) and Transport Layer Security (TLS), Active Directory, Lightweight Directory Access Protocol

—————————— ——————————

1 INTRODUCTION

he CIA (Confidentiality, Integrity and Availability) model is a

high-level principle that can be applied to a wide range of

information systems and computing platforms. Confidenti-

ality is a security principle focusing on the notion that infor-

mation is only seen by the intended recipients. For example, if

Alice sends a letter in the mail to Bob, it would only be deemed

confidential if Bob were the only person able to read it. This

might look like a straightforward approach, there are several

important security concepts involved to ensure the confidential-

ity.

To ensure that the letter Alice is sending is being read by the

right Bob and the correct Bob should know that the letter is

received from right Alice, both should have an identity

————————————————

Author: Pravat Sutar, E-mail: pravat.sutar01@gmail.com, LinkedIn:
https://www.linkedin.com/in/pravat-sutar/

that uniquely distinguishes themselves from any other person.

In addition, both Alice and Bob need to prove their identities via

a process known as authentication. Identity and authentication

are key components of Hadoop security to ensure confi-

dentiality.

Encryption, an important concept of confidentiality is a
mechanism to apply a mathematical algorithm to a piece of
information where the output is something that unintended re-
cipients are unable to read. Only the intended recipients can
decrypt the encrypted message back to the original unencrypt-
ed message. Encryption of data can be applied both at-rest
and in-transit. At-rest data encryption means that data resides
in an encrypted format when not being accessed. In-flight en-
cryption or in-transit encryption applies to data sent from one
place to another over a network. Both modes of encryption can
be used together or independently.

Integrity of data is a critical component of information securi-

T

643

IJSER

http://www.ijser.org/
mailto:pravat.sutar01@gmail.com
https://www.linkedin.com/in/pravat-sutar/

International Journal of Scientific & Engineering Research, Volume 11, Issue 5, May-2020

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

ty, especially the industries which deal with highly sensitive

data. Even if confidentiality is guaranteed, data that doesn‘t

have integrity guarantees is at risk of substantial damage. For

example, Alice sends a letter to Bob. if Charles intercepts the

letter in transit and makes changes to it without the knowledge

of Alice and Bob, the integrity is compromised. Some

measures such as file permissions and user access control

must be in place in big data cluster. To detect any changes in

data that might occur as a result of an electromagnetic pulse or

server crash, some mechanism must be in place. Some data

might include checksums, and some includes cryptographic

checksums for verification of integrity. Backups or redundan-

cies must be available to restore the affected data to its correct

state.

Confidentiality and integrity are closely aligned to well-

known security concepts, but availability is largely covered by

operational preparedness. For example, if Alice sends letter to

Bob but the letter is not sent to Bob because the post office is

closed, then the letter is unavailable to Bob. The availability of

data or services can be impacted by regular outages such as

scheduled downtime for upgrades or applying security patches.

It can also be impacted by security events such as distributed

denial-of-service (DDoS) attacks. High Availability (HA) and

Disaster Recovery (DR) are essential for keeping the Hadoop

cluster available all the time. Data loss or interruptions in con-

nections occurs because of unpredictable events such as natu-

ral disasters and fire. To prevent data loss from such occur-

rences, a backup copy may be stored in a geographically iso-

lated location. Firewalls and proxy servers can guard against

downtime and unreachable data blocked by malicious denial-

of-service (DoS) attacks and network intrusions as well.

Hadoop powered data lakes can provide a robust founda-

tion for a new generation of analytics and insight. Securing the

data before launching or expanding a Hadoop initiative is high-

ly important. By ensuring that data protection and governance

are built into their Big Data environment, enterprises can ex-

ploit the full value of advanced analytics without exposing their

businesses to new risks. Few pillars of Big Data security elabo-

rated in this paper are given below.

Sl No. Areas of Big Data Security

1

Authentication and identity propagation

using Kerberos

2 Kerberos SPNEGO authentication

3 Perimeter Security using Apache Knox

4 Authorization using Apache Ranger

5 Authorization with Apache Sentry

6

A comparative study of Apache Sentry and

Apache Ranger

7

Data Protection (both data-at-rest encryption and

in-transit data encryption)

8 Access Control List (ACL)

9 Hadoop Group Mapping for LDAP/AD with SSSD

10 SSL for Hadoop web components

11 Data Governance

12 Auditing and Reporting

Security features described throughout this paper apply to the

versions of the associated project listed in below table.

Apache Hadoop 3.1.1 Apache Ambari 2.7.5

Apache Knox 1.0.0 Apache HBase 2.1.6

Apache Ranger 1.2.0 Apache Hive 3.1.0

Apache Atlas 2.0.0 Apache Kafka 2.0.0

Kerberos 5 Apache Spark 2.3.2

Apache Sentry 2.1.0 Apache ZooKeeper 3.4.6

Transport Layer Security (TLS

1.3) Apache Zeppelin 0.8.0

2 CHALLENGES IN DATA SECURITY

Data security is the process of protecting the most critical busi-

ness assets / data against unauthorized or unwanted usage

including deploying the right data security products and com-

bining people and processes with the technology you choose

to protect data throughout its lifecycle. Much like other forms of

cyber-security, the big data variant is concerned with attacks

that originate either from the online or offline spheres.

These threats include the theft of information stored online,

ransomware, or DDoS attacks. The issue can be even worse

when companies store information that is sensitive or confiden-

tial, such as customer information, credit card numbers, or

even simply contact details. Additionally, attacks on an organi-

zation‘s big data storage could cause serious financial reper-

cussions such as losses, litigation costs, and fines or sanc-

tions.

Implementing Big data security ensures to keep out on un-

authorized users and intrusions with firewalls, provides strong

user authentication, end-user training, and intrusion protection

systems and intrusion detection systems. In addition, encrypt-

ing the enterprise data in-transit and at-rest. Along with this

network security strategy, big data environments provide few

additional layers of security because security tools must oper-

ate during three data stages that are not all present in the net-

work. These stages are at data ingress / data that coming in,

data storage and data output / outbound which goes out to

applications and reports.

Incoming Data from different Data Sources.
The first challenge is data ingestion – data is ingested from

variety of source systems such as user-generated data alone

can include CRM or ERM data, transactional and database

data, and vast amounts of unstructured data such as email

messages or social media posts. In addition, the machine gen-

erated data including logs and sensors which could be inter-

cepted or corrupted in transit. The data in-transit from sources

to the platform must be secured.

Data in Storage
When the data is at the storage layer, it can be stolen or held

hostage while resting on cloud or on-premise clusters. Protect-

ing data at storage layer takes mature security toolsets includ-

ing encryption at rest, strong user authentication, and intrusion

protection and planning. The security toolsets must be config-

ured across a distributed cluster platform with many servers

644

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 5, May-2020

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

and nodes, and it must protect log files and analytics tools as

they operate inside the platform.

Data output or outbound for Analytics
The data used for analytics from output or outbound layer

could provide an access point for hackers or other malicious

parties. As the entire reason for the complexity and expense of

the big data platform / data lake is being able to run meaningful

analytics across massive data volumes and different types of

data, it could provide an access point for hackers or other ma-

licious parties. These analytics output results to applications

and data visualization. This valuable intelligence makes for a

rich target for intrusion and it is critical to encrypt the output.

And for security compliance at this stage, make certain that

results going out to end-users do not contain regulated data.

These three challenges play a crucial and critical role in creat-

ing a flexible end-to-end big data security architecture for any

organization.

3 BIG DATA HADOOP SECURITY COMPONENTS

OVERVIEW

Hadoop-powered data Lake can provide a robust foundation

for a new generation of analytics and insight, but it‘s important

to consider security before launching or expanding a Hadoop

initiative. By making sure that data protection and governance

are built into your Big Data environment, you can leverage the

full value of advanced analytics without exposing your busi-

ness to new risks.

A holistic approach on data security comprises of below com-

ponents –

Figure 1: Authentication Components

Figure 2: Authorization Components

Figure 3: Data Protection Components

Figure 4: Data Audit & Reporting Components

Figure 5: Kerberos SPNEGO Authentication

 Figure 6: HDFS Extended ACLs

 Figure 7: LDAP/AD auth over SSL

Authentication

Kerberos in Native

Apache Hadoop

HTTP/REST API Se-

cured with Apache

Knox Gateway

Kerberos Apache Knox

Authorization

Fine grain access

control
Granular,

role-based authori-

zation to data and

metadata

Apache Ranger Apache Sentry

RBAC, Row Level

Filtering, Column

Masking

Data Protection

Wire Encryption

(RPC encryption or

Data Transfer Pro-

tocol and HTTPS

encryption, JDBC

HDFS Data At Rest

Encryption through

Ranger KMS

In-transit enc Data at-rest enc

Audit

Policy and access

history

Ranger/Sentry Ranger/Sentry

Centralized audit re-

porting

HTTP Auth

Kerberos-based single sign-on authentication

mechanism to HTTP

SPNEGO

Access Control List

Set different permissions for specific

named users or named groups in HDFS

HDFS Extended ACLs

External Auth

Validating a username and password com-

bination with a directory server such MS

Active Directory, OpenLDAP or OpenDJ

using LDAP over SSL (LDAPS)

LDAP/AD

Protect the integrity and confidentiality of data

between the user's computer and Hadoop‘s

web components.

SSL for Web UI

645

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 5, May-2020

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

Figure 8: HTTPS for Hadoop Web Components

 Figure 9: Data Governance & Management

4 AUTHENTICATION AND IDENTITY PROPAGATION USING

KERBEROS

Authentication is broadly classified into two categories. They

are service authentication and user authentication.

Figure 10: Authentication categorization

4.1 Service Authentication

Service authentication refers to the identity verification process

among different service components. There are many compo-

nents in Big Data ecosystems such as HDFS, YARN, Map Re-

duce, Zookeeper, HBase, Oozie, Spark, Kafka etc. A typical

data lake consists of master node, edge node and data node.

For example – Name node, Resource manager, Zookeeper,

HBase master and other master components are setup in mas-

ter node. Similarly, node manager, data node, HBase region

server and Ambari agent etc. are setup in data node. Inter

communication among the services are done as part of pro-

cessing a request. If a new node is provisioned with required

service component installed and the services are allowed to

join the cluster without authenticating its identity, the data may

be illegally obtained. If a particular service enables service au-

thentication, only nodes with valid identity information can join

the cluster.

Example- When Hive is integrated with its metadata store,

the metadata store credentials are configured with Hive. When

Apache Nifi is integrated with Ranger, proper credentials are

being configured for identity.

The intercommunication among the service components

can be secured with through wire encryption. Wire encryption

protects data as it moves in and out of Hadoop cluster over

RPC, HTTP, Data Transfer Protocol (DTP), and JDBC. A client

communicates directly with Hadoop cluster and the data can

be protected through RPC encryption and Data Transfer Proto-

col. A client uses RPC to connect to the NameNode (NN) to

initiate file read and write operations. RPC connections in Ha-

doop use Java‘s Simple Authentication & Security Layer

(SASL) with encryption well supported. When the client re-

quest to read and write the data from the datanode, the

NameNode gives the client the address of the DataNode (DN).

The actual data transfer between the client and a DN uses

Data Transfer Protocol.

To access the Hadoop web components, users typically us-

es a browser. For example, Ambari Web UI, Ranger Admin

web UI, Resource Manager Web UI etc. The user also uses

command line tools (CLI) and applications use REST APIs or

Thrift. Encryption over the HTTP protocol is implemented with

the support for SSL across a Hadoop cluster and for the indi-

vidual components.

HiveServer2 implements encryption with Java SASL proto-

col‘s quality of protection (QOP) setting. With this the data

moving between a HiveServer2 over JDBC and a JDBC client

can be encrypted. Additionally, HTTPS encryption should be

used in the shuffle phase especially when data moves between

the Mappers and the Reducers over the HTTP protocol.

4.2 User Authentication

User authentication is a process that allows a device to verify

the identity of a user/client who connects to a network re-

source. Without the user authentication, the service simply

trusts the identity information provided by clients.

On most of the scenarios, a password is used to prove the

user's identity. For example - on a distributed network system,

the password is transmitted over the network from the edge

node. Example – the client queries the Hive table. As this

password is the one secret piece of information that identifies a

user, anyone knowing a user's password can effectively be that

user on Hive, querying the data, updating critical data. As per

the Electronic Communications Privacy Act of 1986 (ECPA),

it‘s a federal crime.

Hence, it is necessary to prevent anyone from intercepting

or eavesdropping on the transmitted password. In addition, it is

necessary to provide a means of authenticating users: any

time a user requests a service, they must prove their identity.

This user authentication is greatly achieved by Kerberos.

Strongly authenticating and establishing a user‘s identity is

the basis for secure access in Hadoop. Hadoop uses Kerberos

as the basis for strong authentication and identity propagation

for both user and services. Kerberos is a computer-network

authentication protocol that works on the basis of tickets to

allow nodes communicating over a non-secure network to

prove their identity to one another in a secure manner. It‘s a

client–server based model and provides mutual authentication

- both the user and the server verify each other's identity. Ker-

beros protocol messages are protected against eavesdropping

and replay attacks.

Kerberos builds on symmetric key cryptography and re-

quires a trusted third party and use public-key cryptography

during certain phases of authentication. The Kerberos server

Secure Web Connection

Data Governance

Provides governance capabilities on Hadoop to

address compliance requirements through a

scalable set of governance services, including

data lineage, agile data modeling, a REST API

to provide a flexible access, and metadata ex-

change.

Apache Atlas

646

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 5, May-2020

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

itself is known as the KDC (Key Distribution Center). At a high

level, it has three parts:

a. A database of the users and services (also known as prin-

cipals) that it knows about and their respective Kerberos

passwords

b. An AS (Authentication Server) which authenticates the Ker-

beros client against the user database, and grants a Ticket

Granting Ticket (TGT) for the client

c. A TGS (Ticket Granting Server) that issues subsequent ser-

vice tickets based on the initial TGT

It validates and the client is allowed to access the requested

Kerberos service and issues a service ticket for that service.

The TGS acts as the trusted third party in the Kerberos proto-

col. Based on the user principal requests, the AS returns a

TGT which is encrypted using the user principal's Kerberos

password and its known only to the user principal and the AS.

The user principal decrypts the TGT locally using its Kerberos

password and from that point forward, until the ticket expires,

the user principal can use the TGT to get service tickets from

the TGS. Service tickets are what allow a principal to access

various services. The cluster resources like the host and ser-

vices cannot provide a password each time to decrypt the TGT

so they use a special file called a keytab file which contains the

resource principal's authentication credentials. Kerberos server

has control on the set of hosts, users, and services is known

as realm.

Term Description

Key Distribution

Center (KDC)

The trusted source for authentication

in a Kerberos-enabled environment.

Kerberos KDC

Server

The machine or server that serves as

the Key Distribution Center (KDC).

Kerberos Client
Any machine in the cluster that au-

thenticates against the KDC.

Principal
The unique name of a user or service

that authenticates against the KDC.

Keytab
A file that includes one or more princi-

pals and their keys.

Realm
The Kerberos network that includes a

KDC and several Clients.

KDC Admin Ac-

count

An administrative account used by

Ambari to create principals and gener-

ate keytabs in the KDC.

Kerberos Architecture

Figure 11: Kerberos Architecture
Step 1: The Kerberos client sends its user ID in a cleartext mes-

sage which does not include the client's password, nor its secret

key based on the password to the authentication server (AS).

Step 2: The authentication server (AS) validates if the client is in

the user database and generates the secret key for the client by

hashing the client's password if it is found. The authentication

server then sends a client or TGS session key and a TGT to the

Kerberos client. The session key is encrypted with the secret key

of the client.

Step 3: The Kerberos client then decrypts the client or TGS ses-

sion key and sends a request message containing the TGT and

the ID of the Kerberos service to be accessed and an authentica-

tor message containing the client ID and the timestamp and en-

crypted with the client or TGS session key to the ticket granting

service.

Step 4: The TGS decrypts the ticket in the request message to

retrieve client or TGS session key and decrypts the authenticator

message. The Kerberos client is then verified by the if it is author-

ized to access the Kerberos service requested. If it is authorized, it

sends a service ticket and a client/server session key encrypted

along with the client or TGS session key back to the Kerberos

client.

Step 5: The Kerberos client accesses the Kerberos services by

sending the service ticket and a new authenticator message en-

crypted with the client/server session key to the Kerberos service.

Step 6: The Kerberos service decrypts the service ticket to retrieve

the client/server session key, then decrypts the authenticator

message to retrieve the client's timestamp. The Kerberos service

sends a service confirmation message including the timestamp

and encrypted with the client/server session key back to the Ker-

beros client.

The mutual authentication is now complete after the Kerberos

client decrypts the service confirmation message and verifies the

timestamp is correct. The Kerberos client can now start issuing

service requests, and the Kerberos service can provide the re-

quested services for the client.

Kerberos authentication relies on a secure user database stor-

ing user IDs and passwords. Using secret keys for encryption

requires that the password on the Kerberos client or Kerberos

service must match the one stored in the database on the KDC. If

the passwords do not match, the secret keys hashed from the

passwords do not match either and decrypting messages fails. As

a result, the Kerberos client cannot access the services config-

ured with Kerberos. A typical flow of accessing hive server 2 in

Kerborized Hadoop cluster.

647

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 5, May-2020

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

Figure 12: Accessing Hive in Kerborized Hadoop cluster
Recommendations

5 KERBEROS SPNEGO AUTHENTICATION

Simple and Protected GSSAPI Negotiation Mechanism (SPNE-

GO) is a GSSAPI "pseudo mechanism" used by client-server

software to negotiate the choice of security technology. SPNEGO

is used when a client application wants to authenticate to a re-

mote server, but neither end is sure what authentication protocols

the other supports.

SPNEGO's most visible use is in Microsoft's "HTTP Negotiate"

authentication extension. It was first implemented in Internet Ex-

plorer 5.01 and IIS 5.0 and provided single sign-on capability later

marketed as Integrated Windows Authentication. The negotiable

sub-mechanisms included NTLM and Kerberos, both used in Ac-

tive Directory. The HTTP Negotiate extension was later imple-

mented with similar support in Mozilla and Google Chrome.

Kerberos authentication over HTTP refers to the use of the HTTP

negotiate protocol to perform Kerberos authentication at the

transport layer between a client and a service in Hadoop cluster.

The tokens required for the authentication are transmitted in

HTTP headers. The SPNEGO specification suggests using

SSL/TLS to provide confidentiality with the authentication mecha-

nism.

By default, access to the HTTP-based services and UIs for the

Hadoop cluster are not configured to require authentication. Ker-

beros authentication can be configured for the Web UIs for HDFS,

YARN, MapReduce2, HBase, Oozie, Falcon, Zeppelin Notebook

UI and Storm.

Recommendations

6 PERIMETER SECURITY USING APACHE KNOX
Perimeter security refers to natural barriers or built fortifications to

either keep intruders out or to keep captives contained within the

area the boundary surrounds. Perimeter security helps secure

Apache Hadoop cluster resources to users accessing from out-

side the cluster. It enables a single access point for all REST and

HTTP interactions with Apache Hadoop clusters and simplifies

client interaction with the cluster.

Perimeter security has following benefits:

 Hide service-specific URLs/Ports by acting as a Proxy.

 Simplify authentication of various Hadoop services and UIs

 Enable SSL termination at the perimeter

 Ease management of published endpoints across multiple

clusters

 Provides detailed access logs

Typical perimeter security includes technologies like application

proxies, firewalls, intrusion detection systems (IDS) and virtual

private network (VPN) servers. A combination of these technolo-

gies will provide a hardened exterior to your deployment. Apache

Knox as a type of application proxy within the perimeter layer

which receives requests intended for another server and acts on

the client's behalf to obtain the requested resource.

Application proxy servers are often used when the client and

the server are incompatible for direct connection. If the client is

unable to meet the security authentication requirements of the

server but through the application proxy, it is permitted to access

some of the services. An application proxy authenticates users

and can assert the authenticated identity to the intended server,

breaks the TCP/IP connection between a client and server, hides

the internal cluster IP addresses; only the IP address of the proxy

server is visible to clients, provides detailed access logs and

caches information as well.

The Apache Knox Gateway is a system to extend the reach of

Apache Hadoop services to users outside of a Hadoop cluster

without reducing Hadoop security. Knox also simplifies Hadoop

security for users who access the cluster data and execute jobs

and it is designed as a reverse proxy. Knox integrates with Identity

Management and SSO (Single Sign-On) systems used in enter-

prises and allows identity from these systems be used for access

to Hadoop clusters. Considering Accessibility, Security and Inte-

gration, Apache Knox Gateways provides out of the box capabili-

ties. They are given below –

 It extends Hadoop‘s REST/HTTP services by encapsulating

Kerberos to within the Cluster. Hence, access is simplified.

Encryption settings in MIT Kerberos are often set to a variety

of encryption types, including weak choices such as DES by

default. Its recommended to remove weak encryption types to

ensure the best possible security. Weak encryption types are

easily exploitable. When using AES-256, Java Cryptographic

Extensions need to be installed on all nodes in the cluster to

allow for unlimited strength encryption types. It is important to

note that some countries prohibit the usage of these encryp-

tion types. Always follow the laws governing encryption

strength for your country.

In environments where users from Active Directory (AD) need

to access Hadoop Services, setting up one-way trust between

Hadoop Kerberos realm and the AD (Active Directory) domain

is recommended.

As Kerberos is a time-sensitive protocol, all hosts in the realm

must be time-synchronized, for example, by using the Net-

work Time Protocol (NTP). If the local system time of a client

differs from that of the KDC by as little as 5 minutes (the de-

fault), the client will not be able to authenticate.

Issues encountered in SPNEGO can be hard to debug. Ena-

ble the flag ―-Dsun.security.spnego.debug=true‖ in krb5.conf

which can provide additional debug logging for a Kerberos

secured web endpoint.

648

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 5, May-2020

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

 It imposes REST API security centrally, routing requests to

multiple Hadoop clusters. Hence, controlling the access is

centralized.

 It exposes Hadoop‘s REST/HTTP services without revealing

network details, providing SSL out of the box. Hence, securi-

ty is enhanced.

 It supports Active Directory, LDAP, SSO, SAML and other

authentication systems. Hence, enterprise integration is

greatly achieved.

Apache Knox 1.4.0! released on 26th April 2020 delivers three

groups of users facing services

Proxying Services

Provide access to Apache Hadoop via

proxying of HTTP resources.

Authentication

Services

Authentication for REST API access as

well as WebSSO flow for UIs. LDAP/AD,

Header based PreAuth, Kerberos, SAML,

OAuth are all available options.

Client Services

Client development can be done with

scripting through DSL or using the Knox

Shell classes directly as SDK. The Knox-

Shell interactive scripting environment

combines the interactive shell of groovy

shell with the Knox Shell SDK classes for

interacting with data from your deployed

Hadoop cluster.

Apache Knox deployment Architecture
Hadoop is accessed by the user externally through Knox, REST

API and through the Hadoop CLI tools. The following diagram

shows a typical Hadoop deployment using Apache Knox.

Figure 13: Apache Knox deployment Architecture

NN=NameNode, RM=Resource Manager, DN=DataNote,

NM=NodeManager, HS2=HiveServer 2, LB=Load Balancer,

CLI=Command Line Interface, RPC=Remote Procedure Call,

DMZ=Demilitarized Zone

Typical Security Flow for retrieving data from Hive in a kerbor-

ized Hadoop cluster using firewall and request routed through

Knox gateway along with authentication by Ranger and distribut-

ed directory information services LDAP.

Figure 14: Security flow on data retrieval from Hive through Knox in a
Kerborized Hadoop cluster

Supported Hadoop Services
Apache Knox Gateway supports the following Hadoop services

versions in both Kerberized and Non-Kerberized clusters:

The following Apache Hadoop ecosystem services have integra-

tions with the Knox Gateway

Ambari and

Cloudera Manager
Apache Oozie

Apache Tinkerpop -

Gremlin

WebHDFS (HDFS)
Apache

Hive/JDBC

Apache Avati-

ca/Phoenix

Yarn RM

Apache Hive

WebHCat

(Templeton)

Apache SOLR

Stargate (Apache

HBase)
Apache Storm

Apache Livy (Spark

REST Service)

Apache Ranger
Kafka REST

Proxy
Apache Zeppelin

Supported Apache Hadoop ecosystem UIs

Name Node UI Apache Ambari UI

Job History UI Apache Ranger Admin Console

Yarn UI Apache Zeppelin

Apache Oozie UI Apache NiFi

Apache HBase UI Hue

Apache Spark UI Livy and Apache Impala

Mapping examples of WebHDFS, Oozie, Hive JDBC and
HBase are as below –

WebHDFS

Gateway
https://{gateway-host}:{gateway-port}/{gateway-

path}/{cluster-name}/webhdfs

Cluster http://{webhdfs-host}:50070/webhdfs

Oozie

Gateway
https://{gateway-host}:{gateway-port}/{gateway-

path}/{cluster-name}/oozie

Cluster http://{oozie-host}:11000/oozie}

HBase

649

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 5, May-2020

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

Gateway
https://{gateway-host}:{gateway-port}/{gateway-

path}/{cluster-name}/hbase

Cluster http://{hbase-host}:8080

Hive JDBC

Gateway

jdbc:hive2://{gateway-host}:{gateway-

port}/;ssl=true;sslTrustStore={gateway-trust-

store-path};trustStorePassword

={gateway-trust-store-password}; transportMode

=http;httpPath={gateway-path}/{cluster-name}

/hive

Cluster http://{hive-host}:10001/cliservice

These mapping are generated from the combination of the

a. Gateway configuration

file:{GATEWAY_HOME}/conf/gateway-site.xml) and

b. cluster topology descriptors: {GATE-

WAY_HOME}/conf/topologies/{cluster-name}.xml).

Recommendations

7 AUTHORIZATION USING APACHE RANGER
Apache Ranger is a framework that provides a centralized plat-

form to define, administer and manage security policies consist-

ently across Hadoop components. It provides comprehensive

security across the Apache Hadoop ecosystem. Using the Apache

Ranger console, administrators can easily manage different poli-

cies for access to files, databases, tables and columns. These

policies can be set for individual users or groups and then en-

forced consistently across multiple Hadoop stacks.

Encryption of data-at-rest in HDFS is achieved by Ranger Key

Management Service (KMS). The Ranger KMS provides a scala-

ble cryptographic key management service for data encryption.

Ranger KMS is developed by the Apache community which ex-

tends the native Hadoop KMS functionality by allowing system

administrators to store keys in a secure database. Ranger also

provides centralized audit capabilities that tracks all the access

requests in real time and support multiple destination sources

including HDFS and Solr.

Apache Ranger has the following goals:

a. Centralized security administration to manage all security

related tasks in a central UI or using REST APIs.

b. Fine grained authorization to do a specific action and/or op-

eration with Hadoop component/tool and managed through

a central administration tool

c. Standardize authorization method across all Hadoop com-

ponents.

d. Enhanced support for different authorization methods - Role

based access control, attribute-based access control etc.

e. Centralize auditing of user access and administrative actions

(security related) within all the components of Hadoop.

f. Dynamic column masking and row level filtering, dynamic

policy conditions, classification or tag-based policies for Ha-

doop ecosystem components

Apache Ranger provides a centralized security framework to

manage fine-grained access control across 9 different compo-

nents.

Apache Hadoop HDFS Apache Solr

Apache Hive Apache Kafka

Apache HBase Apache NiFi

Apache Storm YARN

Apache Knox -

Ranger plugin for HDFS checks for Ranger policies and access
is granted to user if the policy is defined. If the access policy is
not defined in Ranger, then Ranger would default to na-
tive permissions model in HDFS (POSIX or HDFS ACL). This
federated model is applicable for HDFS and Yarn service
in Ranger as well.

Figure 15: Federated permission model in Ranger

Simplified workflow for accessing Hive –

Figure 16: Simplified workflow for accessing Hive

7.1 Row-level filtering

Row-level filtering in Apache Ranger helps to set access policies
for rows in Hive tables. It filters and simplifies the hive query by
moving the access restriction logic down into the Hive layer. This
access restrictions are applied every time when data access is
attempted. It controls access to rows in Hive table based on the

Apache Knox integration with Apache Ranger is recommend-

ed to check the permissions of users who want to access

cluster resources. Enabling SSL is highly recommended. In

case Hive connections gets disconnected via Apache Knox,

modify the connection timeout and number of max connec-

tions in gateway-site configuration file.

Improve response times via Apache Knox setting up below

properties in gateway.site

gateway.metrics.enabled=false, gateway.jmx.metrics. report-

ing.enabled=false, gate-

way.graphite.metrics.reporting.enabled=false.

650

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 5, May-2020

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

context. This feature provides seamless behind-the-scenes en-
forcement of row-level segmentation without having to add this
logic to the predicate of the query.

Through this security features in Ranger, Hive data access can
be restricted to specific rows based on user characteristics such
as group membership and the runtime context in which this re-
quest is issued. Hence, it improves the reliability and robustness
of Hadoop cluster. Few of the use cases where row-level filtering
can be beneficial include:

a. In Healthcare service, a hospital can create a security policy
which filters the patient‘s data and allows doctors to view da-
ta rows only for their own patients, and that allows insurance
claims administrators to view only specific rows for their
specific site.

b. In financial services, a bank can create a policy to restrict
access to rows of financial data based on the employee's
department and role. For example - only employees in the
finance department are allowed to see customer invoices,
payments, and accrual data; only Singapore HR employees
can see Singapore employee data.

c. In information technology, a multi-tenant application can
create logical separation of each tenant's data so that each
tenant can see only their own data rows.

Along with row-level, filters can also be applied to specific users,
groups, and conditions as well. Filters are evaluated in the order
listed in the policy and an audit log entry is generated each time a
row-level filter is applied to a table or view. For example: to restrict
users to access only records of customers located in the same
country where the user works. US users can only access US cus-
tomer records and UK users can only access UK customer rec-
ords. Users belong to one of the country-specific groups main-
tained in LDAP/AD, as shown in the example below.

Group name Users

us-employees NameA, NameB

uk-employees NameC, NameD, NameE

de-employees NameF, NameG

Sample records in customer table in Hive.

User
Id

Username Country Date of
Birth

Phone
Number

1 NameA US 1993-12-

18

123-411-7890

2 NameB US 1975-03-

22

234-522-

8901

3 NameC UK 1985-01-

11

12-3433-

7890

4 NameD UK 1976-05-

19

23-4555-

8901

5 NameE UK 1981-07-

23

34-5644-

9012

6 NameF DE 1995-09-

07

23-477-

78901

7 NameG DE 1999-02-

06

34-599-

89012

On executing the select query, user ‗NameE‘, a member of uk-
employees group can only see the records of customers on UK.

User
Id

Username Country Date of
Birth

Phone
Number

3 NameC UK 1985-01-11 12-3433-

7890

4 NameD UK 1976-05-

19

23-4555-

8901

5 NameE UK 1981-07-

23

34-5644-

9012

Specific query can be defined in row level filter to make the data
available for public group.

7.2 Data Masking

Column masking in Hive with Ranger policies is of two types. They
are dynamic resource-based and dynamic tag-based column
masking. Data masking doesn‘t physically alter any data or make a
copy of it. Sensitive data doesn‘t leave the data store rather obfus-
cated when presenting to the user. In addition, no changes are
incorporated at the application or hive later for data masking.

Dynamic Resource-Based Column Masking in Hive with Ranger
Policies

Apache Ranger dynamic resource-based column masking capabili-
ties are used to protect sensitive data in Hive in near real-time.
Policies can be set that anonymize sensitive data columns dynami-
cally from Hive query output. For example, you can mask sensitive
data within a column to show only the first or last four characters.
With dynamic column-level masking, sensitive information never
leaves Hive database and no changes are required at the consum-
ing application or the Hive layer. Producing additional protected
duplicate versions of datasets is also not needed.

Several masking options are available in Ranger such as show last
4 characters, show first 4 characters, Hash, Nullify and date masks
(show only year). The masking type can be defined for specific
users, groups, and conditions and Masks are evaluated in the
order listed in the policy. In addition, an audit log entry is generated
each time a masking policy is applied to a column.

Dynamic Tag-Based Column Masking in Hive with Ranger
Policies

The tag-based masking policy anonymizes Hive column data
based on tags and tag attribute values associated with Hive col-
umn usually specified as metadata classification in Atlas. If there
are multiple tag masking policies applied to the same column in
the Hive table, the masking policy with the lexico-graphically
smallest policy-name is chosen for enforcement, e.g. policy "a" is
enforced before policy "aa". Masking type can be defined for
specific users, groups, and conditions and a variety of masking
types such as show last 4 characters, show first 4 characters,
Hash, Nullify, and date masks can be de-fined. In addition, masks
are evaluated in the order listed in the policy and an audit log en-
try is generated each time a masking policy is applied to a col-
umn.

651

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 5, May-2020

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

A few use cases to enforce column level masking are (a) show
only last 4 digit of the phone number (b) show only year value in
date of birth column, (c) hide the data of a particular column and
(d) applying a custom transformation to a particular col-umn. Giv-
en below is an example of showing the last 4 digits of the phone
number of the customer for the public group.

A sample data retrieved from customer table is as below

User
Id

Username Country Date of
Birth

Phone
Number

1 NameA US 1993-12-

18

xxx-xxx-7890

2 NameB US 1975-03-

22

xxx-xxx-8901

3 NameC UK 1985-01-

11

xxx-xxx-7890

4 NameD UK 1976-05-

19

xxx-xxx-8901

5 NameE UK 1981-07-

23

xxx-xxx-9012

6 NameF DE 1995-09-

07

xxx-xxx-8901

7 NameG DE 1999-02-

06

xxx-xxx-9012

Recommendations

8 AUTHORIZATION USING APACHE SENTRY
Apache Sentry is a granular, role-based authorization module for

Hadoop. It‘s enforces fine grained role-based authorization to data

and metadata stored on a Hadoop cluster. It has the ability to

control and enforce precise levels of privileges on data for authen-

ticated users and applications on a Hadoop cluster.

Sentry is designed to be a pluggable authorization engine for Ha-

doop components. It currently works out of the box with Apache

Hive, Hive Metastore/HCatalog, Apache Solr, Impala and HDFS

(limited to Hive table data). It allows to define authorization rules to

validate a user or application‘s access requests for Hadoop re-

sources. Sentry is highly modular and can support authorization

for a wide variety of data models in Hadoop.

Role-based access control (RBAC) is an important mechanism to

manage authorization for a large set of users and data objects in

an organization. New data objects get added or removed, users

join, move, or leave organizations all the time. Managing objects

or users through RBAC is easier. For example - if user A joins the

finance department, simply adding the user to the active directory

(AD) group i.e. finance-department group will suffice. This will give

use A the access to data from the finance department tables i.e.

Sales and Customer tables.

Sentry components involved in the authorization process –

Figure 17: Components of Apache Sentry

Core Capabilities of Sentry:

Fine-grained

Authorization

Permissions on object hierarchy - DB,

Tables and Columns

Role-based

Authorization

Support for role templates to manage

authorization for a large set of users and

data objects

Multi-Tenant

Administration

Ability to delegate admin responsibilities

or a subset of resources

Key Concepts in Sentry:

Authentication Verifying credentials to reliably identify a user

Authorization Limiting the user‘s access to a given resource

User

Individual identified by underlying authentica-

tion system

Group

A set of users, maintained by the authentica-

tion system

Privilege

An instruction or rule that allows access to an

object

Role

A set of privileges; a template to combine mul-

tiple access rules

Authorization

models

Defines the objects to be subject to authoriza-

tion rules and the granularity of actions al-

lowed. For example:

In SQL model, the objects can be databases

or tables, and the actions are SELECT, IN-

SERT, CREATE and so on. In Search model,

the objects are indexes, collections and doc-

uments; the access modes are query, update

and so on.

Apache Sentry Architecture
The basic goal of Apache Sentry is to implement authorization for

Hadoop ecosystem components in a unified way so that security

administrators can easily control what users and groups have

access to without needing to know the ins and outs of every single

component in the Hadoop stack. The high-level architecture is as

below.

For HDFS authorization, change HDFS umask from 022 to

077 to prevent any new files or folders to be accessed by any-

one other than the owner. The HDFS native permissions for

application data directories such as (/apps/hive, /apps/spark as

well as any custom data folders need to be restrictive and

managed through Apache Ranger.

Auditing in Apache Ranger can be controlled as a policy. Con-

figure SSL for all the plugins enabled

A default policy is created when Apache Ranger is installed

through Ambari for all files and directories in HDFS and with

auditing option enabled. Ambari uses this policy to do smoke

test by ―ambari-qa‖ test user to verify HDFS services. A similar

policy for enabling audit across all files and folders must be

created if the administrators disable this default policy.

652

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 5, May-2020

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

 Figure 18: Apache Sentry Architecture

Recommendations

9 A COMPARATIVE STUDY OF APACHE SENTRY AND

APACHE RANGER
Although both Apache Ranger and Apache Sentry are used for

authorization, the usage depends upon what Hadoop distribution

tool that you are using like Apache, Cloudera or Hortonworks

(powered by Apache Hadoop)

Apache Sentry is owned by Cloudera and it supports HDFS, Hive,

Solr and Impala. Ranger 2.0.0, the latest version doesn‘t support

Impala. Apache Ranger is owned by Hortonworks (now Cloudera

owned) and it offers a centralized security framework to manage

fine-grained access control across: HDFS, Hive, HBase, Nifi,

Storm, Knox, Solr, Kafka, and YARN with Auditing. Apache Sentry

v2.1.0, the latest version of Sentry doesn‘t support Rest API and

audit feature. Apache Ranger supports more features and inte-

grated with more other Hadoop components.
Below are the outlines / a comparative study of both the projects.

Features &
Supported
Components

Apache
Sentry

Apache
Ranger

Authorization Yes Yes

Row Level Filtering No Yes

Column Masking No Yes

Support Tag Based No Yes

Denial Support No Yes

Rest API No Yes

Command Line Yes No

Audit No Yes

Nifi No Yes

Impala Yes No

Hive Yes Yes

HDFS Yes Yes

Solr Yes Yes

Kafka Yes Yes

HBase No Yes

Knox No Yes

YARN No Yes

Storm No Yes

10 DATA PROTECTION
Data protection through data encryption is required by a number

of different governments, financial, and regulatory entities. For

example, the health-care industry has HIPAA (Health Insurance

Portability and Accountability Act) regulations, the card payment

industry has PCI DSS (The Payment Card Industry Data Security

Standard) regulations, and the US government has FISMA (The

Federal Information Security Management Act) regulations. Hav-

ing transparent encryption built into HDFS makes it easier for or-

ganizations to comply with these regulations. Encryption can be

performed at the application-level but if it is integrated through

HDFS, the existing applications can operate on encrypted data

without any changes. This integrated architecture implies stronger

encrypted file semantics and better coordination with other HDFS

functions. Through transparent, end-to-end HDFS encryption,

data read from and written to special HDFS directories is trans-

parently encrypted and decrypted without requiring changes to

user application code.

Data encryption is broadly categorized into encryption of data-

at-rest i.e. encrypting data on persistent storage and encryption of

data in-motion / transit i.e. encrypting data travelling over the net-

work.

10.1 Encryption of Data at Rest
HDFS data-at-rest encryption implements end-to-end encryption

of data read from and written to HDFS. End-to-end encryption

means that data is encrypted and decrypted only by the client.

HDFS does not have access to unencrypted data or keys. HDFS

encryption involves elements such as encryption key, encryption

zone and Ranger KMS.

An Encryption key is a new level of permission-based access pro-

tection, in addition to standard HDFS permissions. HDFS encryp-

tion zone which is a special HDFS directory within which all data

is encrypted upon write and decrypted upon read. Each encryp-

tion zone is associated with an encryption key that is specified

when the zone is created. Each file within an encryption zone has

To figure out why Sentry has denied access in a specific in-

stance, enable Sentry's debug level logging temporarily. This

will help to address other service failures such as queries to

the hive warehouse fail with an authentication error, Impala

queries continue to work even if Sentry is down because they

are authorized against the cached copy of the metadata but

authorization DDLs such as CREATE ROLE or GRANT ROLE

will fail.

For HDFS/Sentry Synchronized Permissions, the default

timeout value is 60 seconds. Its recommended to increase the

timeout value to few minutes as needed to accommodate

large clusters.

653

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 5, May-2020

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

a unique encryption key, called the "data encryption key" (DEK).

HDFS does not have access to DEKs. HDFS DataNodes only see

a stream of encrypted bytes. HDFS stores "encrypted data en-

cryption keys" (EDEKs) as part of the file's metadata on the

NameNode. Clients decrypt an EDEK and use the associated

DEK to encrypt and decrypt data during write and read opera-

tions.

Ranger Key Management Service (Ranger KMS) is an open

source key management service based on Hadoop‘s KeyProvider

API. It provides a scalable cryptographic key management service

for HDFS ―data at rest‖ encryption. It extends the native Hadoop

KMS functionality by allowing system administrators to store keys

in a secure database. For HDFS encryption, the Ranger KMS has

three basic responsibilities: (a) Provide access to stored encryp-

tion zone keys. (b) Generate and manage encryption zone keys

and create encrypted data keys to be stored in Hadoop. (c) Audit

all access events in Ranger KMS.

Transparent Data Encryption flow -

Figure 19: Transparent Data Encryption flow

The overall workflow is as follows:

a. Create an HDFS encryption zone key that will be used to en-

crypt the file-level data encryption key for every file in the en-

cryption zone. This key is stored and managed by Ranger

KMS.

b. Create a new HDFS folder. Specify required permissions,

owner, and group for the folder.

c. Using the new encryption zone key, designate the folder as

an encryption zone.

d. Configure client access. The user associated with the client

application needs enough permission to access encrypted

data. In an encryption zone, the user needs file/directory ac-

cess (through POSIX permissions or Ranger access control)

as well as access for certain key operations.

e. After permissions are set, Java API clients and HDFS appli-

cations with enough HDFS and Ranger KMS access privileg-

es can write and read to/from files in the encryption zone.

10.2 Encryption of data in-motion/in-transit
There are several ecosystems in Hadoop from Spark and Sqoop

to Kafka and Kudu. These services communicate with each other

through different protocols including HTTP, RPC or TCP/IP and

each protocol has a different method to encrypt data. To achieve

secure communications in Hadoop we need to enable the secure

version of protocols used to protect data in-transit. As data and

credentials i.e. username and password go in and out of the clus-

ter, and network configuration (firewall) can mitigate some risk,

encrypting data in transit is indeed required.

RPC/SASL
The most common way for a client to interact with a Hadoop clus-

ter is through Remote Procedure Call (RPC). A client connects to

a NameNode over RPC protocol to read or write a file. RPC con-

nections in Hadoop use the Java Simple Authentication and Secu-

rity Layer (SASL) which supports encryption. When the ha-

doop.rpc.protection property is set to privacy in core-site.xml file,

the data over RPC is encrypted with symmetric keys. Authentica-

tion provides authentication between the two parties. Integrity pro-

vides authentication between the two parties and message integri-

ty and privacy provides confidentiality. RPC encryption covers not

only the channel between a client and a Hadoop cluster but also

the inter-cluster communication among Hadoop services.

TCP/IP
TCP/IP communication protocol is mainly used for communication

between Datanodes. TCP/IP doesn't have encryption built in or

directly supported by default. To address this deficiency, the exist-

ing data transfer protocol is wrapped with SASL handshake. SASL

support encryption.

All HDFS communication protocols build on the TCP/IP proto-

col. HDFS clients connect to a Transmission Control Protocol

(TCP) port opened on the name node, and then communicate

with the name node using a proprietary Remote Procedure Call

(RPC)-based protocol. Data nodes talk to the name node using a

proprietary block-based protocol. To enable this TCP/IP encrypted

data stream, set the dfs.encrypt.data.transfer property to ―true‖ in

the hdfs-site.xml configuration file. This configuration change must

be made on both the NameNode and DataNodes.

TLS/HTTPS
HTTPS is a proven and widely adopted standard for encrypting

HTTP communications. Hadoop uses HTTP for its web Interfaces,

MapReduce shuffle phase and for FSimage operations between

the NameNode and Secondary NameNode. Java and browsers

support HTTPS and many libraries and tolls in most operating

systems have built-in support for HTTPS. Different Apache Ha-

doop components have been developed in different coding lan-

guages – for example, MapReduce in Java or Hue with Python.

Hence, there are different ways and locations where the SSL/TLS

is configured.

For example - To enable the encrypted WebUI for MapReduce v2,

edit the core-site.xml file setting the hadoop.ssl.enabled property

to ―true‖. To enable encrypted shuffle for MapReduce v2, edit the

mapred-site.xml file and set the mapreduce.shuffle.ssl.enabled

property to ―true‖.

The Hadoop SSL Keystore Factory manages SSL for core ser-

vices that communicate with other cluster services over HTTP,

such as MapReduce, YARN, and HDFS. Other components that

have services that are typically not distributed, or only receive

HTTP connections directly from clients, use built-in Java JDK SSL

tools. Examples include HBase and Oozie. Services that are co-

located on a host must configure the server certificate and keys,

and in some cases the client truststore. The certificate must be

managed by Hadoop SSL Keystore management Factory and by

JDK. When using CA signed certificates, configure the Hadoop

SSL Keystore Factory to use the Java keystore and truststore

locations. Hadoop SSL Keystore Management Factory provides

654

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 5, May-2020

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

below features.

a. Supports only JKS formatted keys.

b. Supports toggling the shuffle between HTTP and HTTPS.

c. Supports two-way certificate and name validation.

d. Uses a common location for both the keystore and truststore

that is available to other Hadoop core services.

e. Allows you to manage SSL in a central location and propa-

gate changes to all cluster nodes.

f. Automatically reloads the keystore and truststore without re-

starting services.

SSL Management with JDK supports below features.

a. Allows either HTTP or HTTPS.

b. Uses hard-coded locations for truststores and keystores that

may vary between hosts. Typically, this requires you to gen-

erate key pairs and import certificates on each host.

c. Requires the service to be restarted to reload the keystores

and truststores.

d. Requires certificates to be installed in the client CA truststore.

Its recommended to use LDAP over SSL (LDAPS) rather than

LDAP when communicating with the corporate enterprise directo-

ries to prevent sniffing attacks.

Recommendations

11 ACCESS CONTROL LIST (ACL)
Access Control Lists (ACLs) are useful for implementing permis-

sion requirements that differ from the natural organizational hier-

archy of users and groups. An ACL provides a way to set different

permissions for specific named users or named groups, not only

the file‘s owner and the file‘s group. Along with traditional POSIX

permissions model, HDFS supports POSIX Access Control Lists

(ACLs) as well. The HDFS ACLs provide a fine-grained file per-

missions model that is appropriate for a large enterprise where the

data stored on the Hadoop cluster and the data is accessible to

some groups but inaccessible to many others. An ACL consists of

a set of ACL entries. Each ACL entry names a specific user or

group and grants or denies read, write and execute permissions

for that specific user or group. There are two types of ACL rules:

a. access ACLs: Specify access information for a single file or

directory

b. default ACLs: Pertain to a directory only. It specifies default

access information for any file within the directory that does

not have an access ACL.

Different permissions are assigned to different users and group

through HDFS extended ACLs.

Figure 20: HDFS extended ACLs permissions

setfacl (Syntax: -setfacl --set <acl_spec> <path>) and getfacl

(Syntax: -getfacl [-R] <path>) are utilities to create and list ACLs

on HDFS.

Option Description

-b Remove all entries but retain the base ACL en-

tries. The entries for User, Group, and Others are

retained for compatibility with Permission Bits.

-k Remove the default ACL.

-R Apply operations to all files and directories recur-

sively.

-m Modify the ACL. New entries are added to the

ACL, and existing entries are retained.

-x Remove the specified ACL entries. All other ACL

entries are retained.

--set Fully replace the ACL and discard all existing en-

tries. The acl_spec must include entries for User,

Group, and Others for compatibility with Permis-

sion bits.

<acl_spec> A comma-separated list of ACL entries.

 <path> The path to the file or directory to modify.

hdfs dfs -setfacl -m user:hadoop:rw- /file

hdfs dfs -setfacl -x user:hadoop /file

hdfs dfs -setfacl -b /file

hdfs dfs -setfacl -k /dir

hdfs dfs -setfacl --set user::rw-,user:hadoop:rw-,group::r--

,other::r-- /file

hdfs dfs -setfacl -R -m user:hadoop:r-x /dir

hdfs dfs -setfacl -m default:user:hadoop:r-x /dir

Displays the ACLs of files and directories. If a directory has a de-

fault ACL, getfacl also displays the default ACL.

Option Description

-R List the ACLs of all files and directories recursively.

<path> The path to the file or directory to list.

Example:

hdfs dfs -getfacl /file

hdfs dfs -getfacl -R /dir

Recommendations

12 HADOOP GROUP MAPPING FOR LDAP AD WITH SSSD

The System Security Services Daemon (SSSD) provides a set of
daemons to manage access to local or remote identity and au-
thentication resources through a common framework that can

Periodic key rolling policies are recommended to protect the

data from rogue users who collect keys to which they have

access and use them later to decrypt encrypted data. Enable

trash to prevent accidental deletion of files and directories.

The attacker may gain physical access to swap files of pro-

cesses containing data encryption keys. This can be mitigated

by disabling swap, using encrypted swap, or using mlock to

prevent keys from being swapped out.

Rely on traditional permission bits to implement most permis-

sion requirements and define a smaller number of ACLs to

augment the permission bits with a few exceptional rules. A file

with an ACL incurs an additional cost in memory in the

NameNode compared to a file that has only permission bits.

655

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 5, May-2020

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

provide caching and offline support to the system. It provides
Name Service Switch (NSS) and Pluggable Authentication Mod-
ules (PAM) interfaces toward the system and a pluggable back
end system to connect to multiple different account sources.
SSSD provides interfaces towards several system services. Most
notably:

c. NSS (Name Service Switch) which includes passwd (Pass-

word), shadow (User Group), groups (Groups).

d. PAM provider service

e. SSH Provider service

f. autofs

g. sudo proivder service

To ensure that LDAP/AD group level authorization is enforced in
Hadoop, Hadoop group mapping setup for LDAP/AD must be
performed. There are three ways to set up Hadoop group map-
ping. They are as below.

a. Configure Hadoop Group Mapping for LDAP/AD using

SSSD

b. Configure Hadoop Group Mapping in core-site.xml and

c. Manually create the users and groups in the Linux environ-

ment.

Setting up Hadoop group mapping for AD/LDAP using SSSD over
SSL is highly recommended.

Configure Hadoop Group Mapping for LDAP/AD Using SSSD

The recommended method for group mapping is to use SSSD or
one of the following services to connect the Linux OS with LDAP
over SSL. The services given below allow to not only look up a
user and enumerate their groups, but also allow you to perform
other actions on the host. NSS is required because it performs
user/group resolution. PAM module performs user authentication
and may represent a security risk.

a. Centrify

b. NSLCD

c. Winbind

d. SAMBA

In core-site.xml, configure Hadoop to use LDAP-based group
mapping. You will need to provide the value for the bind user, the
bind password, and other properties specific to you LDAP in-
stance, and make sure that object class, user, and group filters
match the values specified in your LDAP instance. For LDAP over
SSL, the keystore and truststore have to be configured.

Depending on configuration, execute refresh user and group
mappings using the following HDFS and YARN commands.

hdfs dfsadmin -refreshUserToGroupsMappings

yarn rmadmin -refreshUserToGroupsMappings

Verify LDAP group mapping to fetch groups from LDAP for the
current user by running the ―hdfs groups‖ command. With LDAP
group mapping configured, the HDFS permissions can leverage
groups defined in LDAP for access control. Both nss_ldap and
pam_krb5 are a common configuration to implement LDAP identi-
fication and Kerberos authentication in enterprise environments.
RedHat deprecated pam_krb5 with the RedHat Enterprise Linux

7.4 (RHEL) release and does not plan to include pam_krb5 with
RHEL 8.

The target replacement for pam_krb5 is SSSD that is already
available in both RHEL 6 and RHEL 7. SSSD implements features
which are not available in a standard nss_ldap/pam_krb5 configu-
ration, such as authentication when AD is offline, better perfor-
mance and LDAP ID-mapping. Its architecture is to reside be-
tween NSS/PAM and the LDAP/Kerberos systems, and to make
requests to LDAP/Kerberos on behalf of NSS/PAM as shown be-
low.

Figure 21: System Security Services Daemon Connectivity

Recommendations

13 SSL FOR HADOOP WEB COMPONENTS

SSL is a security protocol that allows encrypted communication
between a web server and internet browser. It encrypts all data
transmitted between the server and the user using an encryption
key on the server. An SSL certificate ensures that the information
being transmitted between the web server and browser is only
visible to the user and the website. HTTPS uses TLS (transport
layer security) or SSL (secure sockets layer) for encryption. These
unique encryption keys are transmitted between the web browser
and server to keep the communication safe. The goal of SSL/TLS
is to make it safe and secure to transmit sensitive information in-
cluding personal data, payment or login information. It makes it
difficult for hackers to spy on the connection and steal the data.
Given below are some of the Hadoop web components where
HTTPS can be configured.

Ambari Web UI

Namenode UI

Resource Manager UI

Ranger Admin UI

Zeppelin Notebook UI

Oozie Web Console

Use SSL (hadoop.security.group.mapping.ldap.ssl) to make

the communication between Hadoop cluster and directory

server secure. Its recommended not to use bind password

(hadoop.security.group.mapping.ldap.bind.password) instead

put the password in a separate file (ha-

doop.security.group.mapping.ldap.bind.password.file)

656

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 5, May-2020

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

HBase Master UI

Hive Server 2/Interactive UI

Kafka Web UI

Falcon Web UI

Knox Gateway Web UI

Accumulo Web Monitor UI

Atlas Web UI

Recommendations

14 DATA GOVERNANCE
Data Governance is a system of decision rights and accounta-

bilities for information-related processes, executed according

to agreed-upon models which describe who can take what ac-

tions with what information, and when, under what circum-

stances, using what methods.

Apache Atlas provides governance capabilities for Hadoop

and it uses both prescriptive and forensic models enriched by

business taxonomical metadata. Atlas is designed to exchange

metadata with other tools and processes within and outside of

the Hadoop stack, thereby enabling platform-agnostic govern-

ance controls that effectively address compliance require-

ments. The core governance services include search and pro-

scriptive lineage which facilitates pre-defined and ad hoc ex-

ploration of data and metadata, while maintaining a history of

data sources and how specific data was generated. The ser-

vices also include flexible modeling of both business and oper-

ational data, metadata-driven data access control and classifi-

cation of data to help understand the nature of data i.e. internal

or external sources.

It provides an intuitive UI to view lineage of data as it moves

through various processes and a REST APIs to access and

update lineage. From search and discovery standpoint, it pro-

vides rich REST APIs to search by complex criteria such as

search entities by type, classification, attribute value or free-

text along with SQL like query language to search entities - Do-

main Specific Language (DSL). Atlas provides metadata ser-

vices for the following components:

a. Hive

b. Ranger

c. Sqoop

b. Storm/Kafka (limited support)

c. Falcon (limited support)

Features Description

Knowledge

store

Leverages existing Hadoop metastores. Cate-

gorized into a business-oriented taxonomy of

data sets, objects, tables, and columns. Sup-

ports the exchange of metadata between Ha-

doop components and third-party applications

or governance tools.

Data lifecycle

management

Leverages Apache Falcon with a focus on

provenance, multi-cluster replication, data set

retention and eviction, late data handling, and

automation.

Security

Leverages Apache Ranger plug-in architecture

for security policy enforcement.

Audit store

Historical repository for all governance events,

including security events (access, grant, de-

ny), operational events related to data prove-

nance and metrics. The Atlas audit store is

indexed and searchable for access to govern-

ance events.

RESTful in-

terface

Supports extensibility by way of REST APIs to

third-party applications

Policy engine

Fully extensible policy engine that supports

metadata-based, geo-based, and time-based

rules that rationalize at runtime

Recommendations

15 AUDITING AND REPORTING

Audit logging is an accounting process that logs all operations
happening in Hadoop cluster. It is important to understand where
the data in the cluster is coming from and how it's being used. The
goal of auditing is to capture a complete and immutable record of
all activity within a system. Auditing plays a central role in three
key activities within the enterprise.

a. Auditing is part of a system‘s security regime and can ex-

plain what happened, when, and to whom or what in case

of a breach or other malicious intent. For example, if an

administrator deletes a user‘s data set, auditing provides

the details of this action, and the correct data may be re-

trieved from backup.

b. In terms of compliance, auditing participates in satisfying

the core requirements of regulations associated with sen-

sitive or personally identifiable data (PII), such as the

Health Insurance Portability and Accountability Act

(HIPAA) or the Payment Card Industry (PCI) Data Securi-

ty Standard. Auditing provides the touchpoints necessary

to construct the trail of who, how, when, and how often

data is produced, viewed, and manipulated.

c. Auditing provides the historical data and context for data

forensics. Audit information leads to the understanding of

how various populations use different data sets and can

help establish the access patterns of these data sets.

The risks facing auditing are the reliable, timely, and tamper-

proof capture of all activity, including administrative actions.

Until recently, the native Hadoop ecosystem has relied primari-

ly on using log files. Log files are unacceptable for most audit

use cases in the enterprise as real-time monitoring is impossi-

ble, and log mechanics can be unreliable - a system crash be-

Enable TLS/SSL for all web components in Hadoop cluster to

provide encrypted communication and secure identification of

the server. In addition, use robust security certificates as a

part of enabling HTTPS for Hadoop web UI

Data governance principles apply to both used and unused

data. Applying governance policies to unused data should not

be discarded because Big Data Governance requires an ad-

justment of conventional policies and practices on both used

and unused data in the data lake so that the untapped poten-

tial of Big Data is not constrained by governance.

657

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 5, May-2020

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

fore or during a write commit can compromise integrity and

lead to data loss.

Apache Ranger provides the capability of centralized audit-

ing for Apache Hadoop. Ranger auditing data can be stored in

multiple locations including Apache Solr and HDFS. With

HDFS storing audit logs for compliance purposes, we needed

a way to query these logs. Apache Hive provides the ability to

query HDFS data without a lot of effort. Apache Ranger pro-

vides comprehensive scalable audit logging for resource ac-

cess events with user context, policy edits/creation/deletion,

user session information and component plugin policy sync

operations.

Apache Ranger v2.1.0 supports fine grained authorization

and auditing for following Apache projects.

d. Apache Hadoop

e. Apache Hive

f. Apache HBase

g. Apache Storm

h. Apache Knox

i. Apache Solr

j. Apache Kafka

k. YARN

Apache Ranger provides auditing capabilities at Access, Ad-

min, Login Session and Plugins levels. The Access page pro-

vides service activity data for all policies that have audit set to

on. The default service policy is configured to log all user ac-

tivity within the Service. This default policy does not contain

user and group access rules. The admin tab contains all

events for the auditing security administration web UI, including

Service, Service Manager, Log in, etc. and actions like create,

update, delete, password change. The Login Sessions tab logs

the information related to the sessions for each login. The

plugins tab shows the upload history of the security agents.

This module displays all the services exported from the sys-

tem. The Plugin Status tab shows policies in effect for each

plugin. That includes the relevant host info and when the plugin

downloaded and started enforcing the policies. The user sync

page provides service activity data for all usersync processes

in Ranger. This creates a compliance/audit trail for users and

groups synchronized with each run of userync.

Apache Ranger can use Apache Solr to store audit logs.

Apache Solr is an open-source enterprise search platform. It

provides a search capability of the audit logs through the

Ranger Admin UI. Audits to Solr are primarily used to enable

search queries from the Ranger Admin UI. HDFS is a long-

term destination for audits - audits stored in HDFS can be ex-

ported to any SIEM system, or to another audit store. Ranger

uses Apache Solr to store audit logs and provides UI searching

through the audit logs.

Recommendations

16 CONCLUSION

As major data breaches are hitting well-known entities,

implementation of data security cannot be ignored. The effects

of a data security breach can be catastrophic. Enterprises put-

ting sensitive data to good use must handle the inherent secu-

rity challenges. Fake data generation is one of them. Without

security measures, a financial company may get false flag in

their data and may not be able to identify it as fraud which is

caused by fake data generation. A manufacturing company is

not an exception. It may get a false temperature report which

results in slowdown in production and loss of revenue.

Granular access control helps to grant different user‘s dif-

ferent levels of access to database and applications. Coarse-

grained permissions that give users all or nothing access is no

longer enough for hundreds or thousands of employees who

need access to data for many different usages. Instead, a

scalable and fine-grained access control that prevents unnec-

essary access to sensitive information at every stage of pro-

cessing is utmost needed. HDFS extended ACLs encompass the

HDFS permission model to support more granular file access

based on arbitrary combinations of users and groups.

Data provenance helps to identify where a breach comes

from and it helps to apply a right technique to track the flow of

data using metadata. As data which can be structured, semi-

structured and unstructured flows from a different number of

source systems and processed both batch and real-time, tracking

it can be difficult without the right framework. Apache Atlas pro-

vides efficient metadata management and governance capabilities

for organizations to build a catalog of their data assets, classify

and govern these assets and provide collaboration capabilities

around these data assets for data scientists, analysts and the

data governance team.

Hadoop in the enterprise can no longer get by with simplistic

means for identifying and trusting users and services. Imple-

menting Kerberos in Hadoop data lake is utmost necessary for

strong authentication and identity propagation for users, appli-

cations and services. Knox Gateway provides a single point of

secure access for Hadoop clusters. It exposes access to Ha-

doop clusters through a Representational State Transfer (REST-

ful) API. The gateway provides a firewall between users and

Hadoop clusters.

Standardize authorization method across all Hadoop com-

ponents is efficiently achieved by Apache Ranger. Centralized

security administration to manage all security related tasks in a

central UI or using REST APIs make the administrative work

easy. Implementing right set of tools which ensures confidentiality,

availability and integrity for data security is necessary for data

management especially when big data is concerned. This paper

highlighted different aspects of data security and its challenges

and how to leverage Apache Hadoop components to mitigate the

threats. The paper outlined different data security solutions for

Authentication, Authorization, Data Encryption, Data Masking,

Row level filtering, High Availability, Disaster Recovery, Data Gov-

ernance, Auditing and Reporting. Security component upgrade

in the existing data lake is important as new security features

are constantly being developed and support by the Hadoop

vendors.

There is no all-purpose solution to the specific enterprise

security requirements. I believe that this paper will provide in-

sights on data security challenges and provide solutions to

Due to regulation and compliance, audit logs should be stored

in a database for immediate availability and in HDFS for long-

term storage.

658

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 5, May-2020

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

mitigate the threats by leveraging Apache Hadoop with the

help of right security strategy.

Disclaimer:

The focus of this paper is to share the challenges in data security
and how to mitigate the threats by leveraging Apache Hadoop.
The information shared in the paper are based on my experience
and research. The ideas and recommendations portrayed in the
paper can be used as references for on-premises and/or cloud
Big Data solutions.

REFERENCES

[1] https://ranger.apache.org/

[2] https://sentry.apache.org/

[3] http://atlas.apache.org/#/

[4] https://knox.apache.org/

[5] https://hadoop.apache.org/

[6] https://web.mit.edu/kerberos/

[7] https://en.wikipedia.org/wiki/SPNEGO

[8] https://docs.cloudera.com/

[9] https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.1.5/

[10] O'Reilly - Hadoop Security: Protecting Your Big Data Platform, Author- Ben

Spivey, Joey Echeverria, ISBN-13: 978-1491900987, ISBN-10: 1491900989

[11] Security, Privacy, and Forensics Issues in Big Data (Advances in Information

Security, Privacy, and Ethics), Author - Ramesh C. Joshi and Brij B. Gupta,

ISBN-13: 978-1522597421, ISBN-10: 1522597425.

[12] Data Infrastructure for Next-Gen Finance, Author - Jane Roberts, Released

June 2016, Publisher(s): O'Reilly Media, Inc. ISBN: 9781491959664.

[13] Hadoop: Data Processing and Modelling, Author - Garry Turkington,

Tanmay Deshpande, Sandeep Karanth, ASIN: B01LD8K59S

[14] Big Data Analytics with Hadoop 3.0, Author - Sridhar Alla, ISBN:

9781788628846

[15] Expert Hadoop Administration: Managing, Tuning, and Securing Spark,

YARN, and HDFS (Addison-Wesley Data & Analytics Series), Author - Sam

R. Alapati, ISBN: 0134597192

[16] Architecting Modern Data Platforms: A Guide to Enterprise Hadoop at Scale,

Author - Jan Kunigk, Ian Buss, Paul Wilkinson, Lars George, Published at:

03/01/2019, ISBN: 149196927X

[17] Big Data Governance: An Emerging Imperative, Author - Sunil Soares,

1583473777, 9781583473771

[18] Data Governance: How to Design, Deploy and Sustain an Effective Data Gov-

ernance Program (The Morgan Kaufmann Series on Business Intelligence),

Author - John Ladley, ISBN-13: 978-0124158290, ISBN-10: 0124158293

[19] Hortonworks Data Platform, an open-architecture platform to manage data in

motion and at rest, IBM Analytics,

https://www.ibm.com/downloads/cas/DKWR4KZB

[20] Apache Hadoop. 2019. Apache Hadoop 3.x HDFS Federation Features.

http://hadoop.apache.org/docs/r3.2.0/hadoop-project-dist/hadoop-

hdfs/Federation.html

[21] Hortonworks Security White paper – http://hortonworks.com/wp-

content/uploads/2015/07/Security_White_Paper.pdf

[22] Ready Solutions for Data Analytics: Hortonworks Hadoop 3.0 white papers

[23] https://www.dellemc.com/resources/ja-jp/asset/white-

papers/solutions/h17561-hortonworks-hadoop-v3-ra.pdf

[24] Big Data Management and Security: Audit Concerns and Business Risks

[25] https://chapters.theiia.org/Orange%20County/IIA%20OC%20Presentation

%20Downloads/2015-03-%20IAA%20Big%20Data%20Security.pdf

[26] Simple and Protected GSSAPI Negotiation Mechanism (SPNEGO):

https://en.wikipedia.org/wiki/SPNEGO

[27] New Approaches Required for Comprehensive Hadoop Security:

https://www.dataguise.com/new-approaches-required-for-comprehensive-

hadoop-security-3/

[28] Unprotected Database Exposed 5 Billion Previously Leaked Records:

https://www.securityweek.com/unprotected-database-exposed-5-billion-

previously-leaked-records

[29] 6 Big Data Security Issues for 2019 and Beyond: https://rtslabs.com/6-big-

data-security-issues-for-2019-and-beyond/

[30] Marriott Data Breach:

https://www.forbes.com/sites/kateoflahertyuk/2019/03/11/marriott-ceo-

reveals-new-details-about-mega-breach/#12dbeae155c0

[31] 2019 on Track for Another 'Worst Year on Record':

https://www.riskbasedsecurity.com/2019/08/15/2019-on-track-for-another-

worst-year-on-record/

[32] Lenovo Confirms 36TB Data Leak Security Vulnerability:

https://www.forbes.com/sites/daveywinder/2019/07/17/lenovo-

confirms-36tb-data-leak-security-vulnerability/#7df19f9e62b9

[33] Facebook Security Breach Exposes Accounts of 50 Million Users:

https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-

breach.html

[34] Australia data breach: 90,000 staff, students, suppliers impacted at Melbourne

Polytechnic: https://www.databreaches.net/australia-data-breach-90000-

staff-students-suppliers-impacted-at-melbourne-polytechnic/

[35] Health Data Breach Tally Spikes in Recent Weeks:

https://www.databreachtoday.com/health-data-breach-tally-spikes-in-

recent-weeks-a-14031

659

IJSER

http://www.ijser.org/
https://ranger.apache.org/
https://sentry.apache.org/
http://atlas.apache.org/#/
https://knox.apache.org/
https://hadoop.apache.org/
https://web.mit.edu/kerberos/
https://en.wikipedia.org/wiki/SPNEGO
https://docs.cloudera.com/
https://docs.cloudera.com/HDPDocuments/HDP3/HDP-3.1.5/
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://www.databreachtoday.com/health-data-breach-tally-spikes-in-recent-weeks-a-14031
https://www.databreachtoday.com/health-data-breach-tally-spikes-in-recent-weeks-a-14031

